Options EHS Applied Math B

Scope and Sequence

Unit Lesson

Objectives
Trigonometry
Trigonometric Ratios

The Unit Circle

	Determine the coordinates of points on a unit circle using sine and cosine functions
	Sketch a graph of $y=\sin x$ and $y=\cos x$
	Identify the properties of the graphs of sine and cosine functions
Angles and Trigonometric Functions	
	Convert between radian and degree measure.
	Evaluate trigonometric functions.
	Use the unit circle to explain key features of the sine and cosine functions.
	Use trigonometric functions to solve problems.
Right Triangle Trigonometry	
	Use the Pythagorean theorem, and the trigonometric functions and their inverses to solve right triangles.
	Use special right triangle relationships to solve right triangles.
Graphing Sine and Cosine	
	Analyze key features of sine and cosine functions from equations and graphs.
General Form of Sine and Cosine	
	Graph a vertical or horizontal shift of the sine or cosine function.
	Describe the result of a vertical or horizontal shift on the sine or cosine function.

[^0]Options EHS Applied Math B
Unit Lesson

Law of Sines

Apply the law of sines to solve mathematical and real-world problems.
Determine whether a triangle has zero, one, or two solutions using the ambiguous case of the law of sines.
Law of Cosines

Test

Probability and Statistics

Introduction to Probability

Probability Rules

Experimental Probability
Find the experimental probability of an event, expressing it as a ratio.
Use experimental probability to make predictions.

Probability of Independent Events

Page 2 of 6

Options EHS Applied Math B		Scope and Sequence
Unit	Lesson	Objectives
		Determine if compound events are independent or dependent.
		Calculate probabilities using tree diagrams or the multiplication rule of independent events
Probability of Compound Events		
		Find probabilities of independent compound events using organized lists, tables, or tree diagrams.
		Find probabilities of dependent compound events using organized lists, tables, or tree diagrams.
Probability and Two-Way Tables		
		Construct a two-way table.
		Use a two-way table to determine if two events are independent.
		Compute conditional probabilities from data displayed in a two-way table.
Geometric Probability		
		Identify the probability of landing in a given region of a geometric figure as impossible, unlikely, likely, or certain.
		Calculate geometric probabilities.
Conditional Probability		
		Use calculations to determine if two events are independent.
		Calculate conditional probabilities using formulas and Venn diagrams.
		Calculate probabilities of compound events.
Compound Events and the Fundamental Counting Principle		
		Use the fundamental counting principle to determine the number of possible outcomes.
		Use the fundamental counting principle to determine the probability of compound events.
Properties of Probability Distributions		
		Identify properties of a probability distribution.

[^1]Options EHS Applied Math B
Unit Lesson

Probability with Combinations and Permutations

Identify expressions that represent probabilities of compound events.
Use combinations to compute probabilities of compound events.
Use permutations to compute probabilities of compound events.
Simulations
Describe the simulation of a binomial probability distribution.
Describe the simulation of a geometric probability distribution.
Test

Geometry

Defining Geometric Terms

Symmetries in Shapes

Angles of Geometric Figures
Classify angles.
Use relationships between angles in geometric figures to solve for unknown measures.
Develop and use formulas for the sums of the interior angles of polygons by decomposing them into triangles.

[^2]
Page 4 of 6

Scope and Sequence

Unit Lesson
Objectives
Analyze a sequence of numbers to determine the pattern, and identify whether it is arithmetic or geometric.

Use a recursive rule to calculate a term of a sequence.

Write a recursive rule for a sequence.

Scale Drawings
Use geometry formulas to solve problems
Use scale drawings in the problem-solving process
Slopes of Parallel and
Perpendicular Lines
Complete the steps to prove the slope criteria for parallel and perpendicular lines using coordinate geometry.
Determine if two lines are parallel or perpendicular.
Use slope criteria to find additional points on a line parallel or perpendicular to a given line.
Prove the slope criteria for perpendicular lines.
Graphing Proportional Relationships
Graph a proportional relationship from tables and verbal descriptions.
Identify the meanings of points on the graph of a proportional relationship and determine the characteristics of the graph of a proportional relationship.

Finding a Constant of
Proportionality
Find the constant of proportionality from verbal descriptions, tables, graphs, and diagrams.
Equations of Proportional
Relationships
Identify the constant of proportionality from an equation.
Write an equation to represent a proportional relationship.

Translate between tables, graphs, and equations to represent proportional relationships.
Direct Variation
Recognize equivalent forms of the direct variation statement
Determine the constant of proportionality in a direct variation problem
Solve direct variation problems
Test

Cumulative Exam

Cumulative Exam Review
Cumulative Exam

[^0]: Page 1 of 6

[^1]: Page 3 of 6

[^2]: Recognizing Patterns

