Options EHS Precalculus A

Scope and Sequence

Unit Lesson

Objectives

Prerequisites

Solving Polynomial Equations using Technology

Use technology to solve or approximate solutions of one-variable polynomial equations.
Complex Numbers
Performing Operations with Complex
Numbers

Represent square roots of negative numbers as multiples of i .
Represent complex numbers in the form a + bi or in the complex plane.
Simplify powers of i using their cyclic nature.
Determine the absolute value of a complex number. Numbers

Perform addition, subtraction, multiplication, and division of complex numbers.
Identify the field properties of complex numbers.
The Quadratic Formula
Find real and complex solutions of quadratic equations using the quadratic formula.
Use the discriminant to determine the number and type of roots of a quadratic equation.
Completing The Square
Recognize the pattern of a perfect-square trinomial as the square of a binomial.
Use the square root property to solve equations.
Find complex solutions to quadratic equations by completing the square.
Absolute Value Inequalities

Rewrite absolute value inequalities as compound inequalities.
Solve absolute value inequalities graphically and algebraically.

Unit Lesson

Objectives
Quadratic Inequalities
Find real solutions of quadratic inequalities algebraically and graphically.
Create quadratic inequalities in one variable and use them to solve problems.
Test

Functions and Their Graphs

Symmetry
Determine the symmetry of a relation from a graph.
Determine the symmetry of a function algebraically.
Comparing Characteristics of Functions
Determine the similarities and differences in characteristics of multiple functions graphically.
Determine the similarities and differences in characteristics of multiple functions tabularly.
Determine the similarities and differences in characteristics of multiple functions symbolically.
Compare properties of two functions each represented in a different way (algebraically, graphically, numerically in tables, or by verbal descriptions).

Piecewise Defined Functions
Graph piecewise defined functions.
Evaluate piecewise defined functions.
Determine the domain, range, and continuity of piecewise defined functions.
Step Functions
Evaluate step functions.
Analyze step functions to determine key features of the graph.
Use step functions to model real-world problems.

[^0]
Page 2 of 8

Options EHS Precalculus A		Scope and Sequence
Unit	Lesson	Objectives
		Analyze absolute value functions to determine key features of the graph.
		Model and solve mathematical and real-world problems with absolute value functions.
	Function Operations	
		Combine functions using arithmetic operations, expressing the results both algebraically and graphically.
		Evaluate sums, differences, products, and quotients of functions.
	Composition of Functions	
		Write an expression for the composition of functions.
		Find the domain of the composition of functions.
		Evaluate the composition of functions.
	Function Inverses	
		Find the inverse of a function.
		Use composition to verify that functions are inverses.
	Transformations of Functions	
		Identify a function as belonging to a family of functions.
		Analyze a function rule or graph to determine transformations of the parent function.
	Mathematical Modeling	
		Identify a mathematical model
		Solve problems using formulas as a model
		Develop a function model
		Recognize patterns and trends between two variables using tables as models
	Unit Test	

[^1]
Options EHS Precalculus A

Scope and Sequence

Unit Lesson
Objectives
Graphs of Polynomial Functions
Identify the key features of a polynomial function from a given graph.
Describe the key features of a polynomial function.
Synthetic Division and the Remainder Theorem

Use synthetic division to divide a polynomial by a linear factor.
Apply the remainder theorem.
The Fundamental Theorem of Algebra
Apply the fundamental theorem of algebra to determine the number of roots of a polynomial function.
Use the complex conjugate theorem to factor and solve polynomial equations.
Factoring Polynomials Completely
Analyze the structure of a polynomial to write it in completely factored form.
Polynomial Inequalities
Solve polynomial inequalities having real coefficients.
Apply polynomial inequalities to mathematical and real-world problems.

Graphing Radical Functions

Unit Test

Rational Functions

Vertical Asymptotes of Rational Functions

Determine the vertical asymptotes and holes in the graph of a rational function having the x-axis as its only horizontal asymptote.

Page 5 of 8

Options EHS Precalculus A

Unit Lesson

Equations of Exponential Functions

Exponential Growth Functions

Exponential Decay Functions

Graphing Logarithmic Functions

Evaluating Logarithmic Expressions

Scope and Sequence

Objectives

Determine the equation of an exponential function that best fits the given data
Make predictions using an exponential regression equation
Determine whether a linear or exponential model best fits given data

Identify an exponential growth function given tables, graphs, and function rules, determining the rate of change.

Graph an exponential growth function, and state the domain and range.
State the domain and range of an exponential growth function.
Write an exponential growth function to model a real-world problem, pointing out constraints in the modeling context.

Identify an exponential decay function given tables, graphs, and function rules, determining the rate of change.
Graph an exponential decay function, and state the domain and range.
Write an exponential decay function to model a real-world problem, pointing out constraints in the modeling context.

Relate exponential growth and decay functions using laws of exponents and reflections over the y-axis.

Identify logarithmic functions.
Determine the domain and range of logarithmic functions.
Identify and analyze the graphs of logarithmic functions.

Evaluate logarithmic expressions by converting between logarithmic and exponential forms.
Solve logarithmic equations by converting between logarithmic and exponential forms.

Page 6 of 8

Options EHS Precalculus A

Unit Lesson

Properties of Logarithms

Base e

Solving Logarithmic Equations using Technology

Scope and Sequence

Objectives
Evaluate common logarithms using a calculator.

Evaluate, expand, and simplify logarithmic expressions using properties of logarithms

Apply properties of logarithms and exponents to solve exponential and logarithmic equations having base e.
Analyze exponential and logarithmic functions in base e to determine key features of the graph.
Determine the domain and range of exponential and logarithmic functions in base e.

Rewrite logarithmic expressions using the change of base algorithm.
Solve a one-variable equation containing logarithms by transforming it into a system of equations.
Exponential, Logistic and Logarithmic Models

Solving Exponential Equations by
Rewriting the Base

Solving Equations using Properties of Logarithms

Interpret the numeric values in an exponential, logarithmic, or logistic function in terms of a context.
Model a problem using an exponential, logarithmic, or logistic function.
Solve a problem using an exponential, logarithmic, or logistic function.

Solve exponential equations by rewriting bases.

Apply properties of logarithms to solve logarithmic equations.
Determine extraneous solutions of logarithmic equations.

Solving Exponential and Logarithmic Equations

Page 7 of 8

Solve exponential and logarithmic equations using inverses, properties, and algorithms.
Modeling with Exponential and Logarithmic Equations

Model and solve real-world problems using exponential and logarithmic functions.
Test
Cumulative Exam
Cumulative Exam Review
Cumulative Exam

[^0]: Absolute Value Functions

[^1]: Page 3 of 8

