Options FRMS Math 8B-OR

Unit Lesson

Pythagorean Theorem

Exploring the Pythagorean Theorem

Scope and Sequence

Objectives

Recognize perfect squares.
Identify sets of Pythagorean triples.
Apply the Pythagorean theorem using Pythagorean triples as the side lengths.
Use Pythagorean triples to determine if a triangle is a right triangle.
Estimating and Comparing Square Roots
Estimate square roots without using technology.
Plot the estimated values of square roots on a number line.
Make comparative statements involving square roots.
Finding the Hypotenuse in Right Triangles
Use the Pythagorean theorem to find the length of the hypotenuse of a right triangle.
Approximate the length of the hypotenuse of a right triangle to solve real-world problems.
Unknown Leg Lengths in Right Triangles
Given the length of one leg and the hypotenuse of a right triangle, use the Pythagorean theorem to find the length of the other leg.

Approximate the length of a leg of a right triangle to solve real-world problems.
Converse to the Pythagorean Theorem
Determine if a triangle is a right triangle by using the converse of the Pythagorean theorem.
Finding Distance in the Coordinate Plane

Apply the Pythagorean theorem to find the distance between two points on the coordinate plane
Generate and use the distance formula to find the distance between two points on the coordinate plane.

Unit Lesson

Objectives
Performance Task: Architectural Works and Wonders

Unit Test

Transformations

Congruence
Determine the congruence of figures by measuring corresponding sides and angles.
Identify and write corresponding parts of congruent figures.
Overview of Transformations
Identify types of transformations.
Relate the result of a transformation to the original figure.
Translations
Identify and describe a translation on the coordinate plane.
Translate figures on the coordinate plane given as an ordered pair and verbal expression.
Describe a translation using coordinates.
Reflections
Identify and describe a reflection on the coordinate plane.
Reflect figures on the coordinate plane given the line of reflection.
Describe a reflected figure using the line of reflection and coordinates.

Rotations

Identify the image of a figure after a given rotation.
Analyze a graph to determine the angle and direction of rotation of a figure.
Rotations in the Coordinate Plane
Rotate figures on the coordinate plane given the degree and direction.

Unit Test

Congruence and Similarity

Congruence and Transformations

Dilations

Dilations in the Coordinate Plane

Similarity and Transformations

Parallel Lines Cut by a Transversal

Scope and Sequence

Objectives
Describe the rotation of a figure using coordinates.

Describe a sequence of transformations that shows that a given pre-image is congruent to a transformed figure.

Use proportional reasoning to determine if one figure is a dilation of another.
Determine the scale factor of a dilation.
Determine the result of a dilation given a center of dilation and the scale factor.

Use the scale factor to graph dilations on the coordinate plane.
Describe the dilation of a figure on the coordinate plane by the scale factor.

Determine the similarity of figures by comparing corresponding side lengths and angle measures.
Apply scale factor to find unknown side lengths of an image or pre-image after a dilation or sequence of transformations.

Describe a sequence of transformations that result in a similar figure.

Identify interior angles, exterior angles, alternate interior angles, and alternate exterior angles when a transversal crosses parallel lines.

Find missing measurements using angle relationships in a diagram of a transversal crossing parallel lines. Determine if two lines cut by a transversal are parallel.

Sum of Interior Angles of a Triangle

Page 3 of 7

Page 4 of 7

Page 5 of 7

Page 6 of 7

Cumulative Exam Review
Cumulative Exam

